Work-in-Progress: Emerging E/E-Architectures as Enabler for Automotive Honeypots

Niclas Ilg^{1,2}, Dominik Germek¹, Paul Duplys³, Michael Menth²

¹Corporate Research at Robert Bosch GmbH, Germany

²University of Tuebingen, Germany

³Sector Mobility at Robert Bosch GmbH, Germany

Emerging E/E-Architectures as Enabler for Automotive Honeypots Agenda

Introduction

Regulations, norms, and real-world incidents

Introduction

Regulations, norms, and real-world incidents

Hardening (a lot)

- o Upcoming efforts in intrusion 只detection (& prevention)
- Threat intelligence/attack landscape monitoring?

Research on Automotive Honeypots

State of Research

In-vehicle honeypot

- Realistic environment
- Separate hardware
- o Real vehicle data

V2X honeypot

- Attacks on moving vehicles
- Infrastructure honeypots
 e.g., charging stations for EVs

IoT honeypot

- OBD-II dongles (debug interface)
- o loT components on the Internet

Research on Automotive Honeypots

State of Research

In-vehicle honeypot

- Realistic environment
- Separate hardware
- o Real vehicle data

V2X honeypot

- o Attacks on moving vehicles
- Infrastructure honeypots
 e.g., charging stations for EVs

IoT honeypot

- OBD-II dongles (debug interface)
- o loT components on the Internet

Automotive Honeypot Research Limitations of Current Approaches

3

Opportunities for In-Vehicle Honeypots

Emerging E/E-Architectures

From gateway to zone

Gateway architecture

Domain architecture

Zonal architecture

De-couple hardware and software

Centralize resources & increase performance

From gateway to zone

From gateway to zone

From gateway to zone

Remaining limitations

How many incidents will an in-vehicle honeypot realistically register?

In-Vehicle honeypot as additional layer of intrusion detection.

Different solution for threat landscape monitoring.

Concept for Internetdeployed Honeypots

Threat Landscape Monitoring Internet deployments with LI Honeypots

• How do we convincingly place an automotive honeypot on the public Internet?

- Instead use low-interaction honeypot
 - Mimic systems and service also found in other domains ((I)IoT, mobile, IT)
 - Monitor general interest in related systems and services
 - Low development and maintenance effort

Threat Landscape Monitoring Can we catch advanced attackers?

Medium- and high-interaction honeypots are a great tool for additional insights.

- High development and maintenance cost
- Low credibility on the public Internet (hopefully)

5

